Single-Molecule Studies of Protein Folding

Author:

Borgia Alessandro1,Williams Philip M.2,Clarke Jane1

Affiliation:

1. Department of Chemistry, Cambridge University, Medical Research Council Centre for Protein Engineering, Cambridge, CB2 1EW, United Kingdom;,

2. Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom;

Abstract

Although protein-folding studies began several decades ago, it is only recently that the tools to analyze protein folding at the single-molecule level have been developed. Advances in single-molecule fluorescence and force spectroscopy techniques allow investigation of the folding and dynamics of single protein molecules, both at equilibrium and as they fold and unfold. The experiments are far from simple, however, both in execution and in interpretation of the results. In this review, we discuss some of the highlights of the work so far and concentrate on cases where comparisons with the classical experiments can be made. We conclude that, although there have been relatively few startling insights from single-molecule studies, the rapid progress that has been made suggests that these experiments have significant potential to advance our understanding of protein folding. In particular, new techniques offer the possibility to explore regions of the energy landscape that are inaccessible to classical ensemble measurements and, perhaps, to observe rare events undetectable by other means.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 292 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3