PROTEIN FOLDING: The Endgame

Author:

Levitt Michael1234,Gerstein Mark1234,Huang Enoch1234,Subbiah S.1234,Tsai Jerry1234

Affiliation:

1. Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305;

2. Molecular Biophysics and Biochemistry, Yale University, Bass Center, New Haven, Connecticut 06520;

3. *Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, and

4. Bioinformatics Center, National University of Singapore, Kent Ridge, Singapore

Abstract

The last stage of protein folding, the “endgame,” involves the ordering of amino acid side-chains into a well defined and closely packed configuration. We review a number of topics related to this process. We first describe how the observed packing in protein crystal structures is measured. Such measurements show that the protein interior is packed exceptionally tightly, more so than the protein surface or surrounding solvent and even more efficiently than crystals of simple organic molecules. In vitro protein folding experiments also show that the protein is close-packed in solution and that the tight packing and intercalation of side-chains is a final and essential step in the folding pathway. These experimental observations, in turn, suggest that a folded protein structure can be described as a kind of three-dimensional jigsaw puzzle and that predicting side-chain packing is possible in the sense of solving this puzzle. The major difficulty that must be overcome in predicting side-chain packing is a combinatorial “explosion” in the number of possible configurations. There has been much recent progress towards overcoming this problem, and we survey a variety of the approaches. These approaches differ principally in whether they use ab initio (physical) or more knowledge-based methods, how they divide up and search conformational space, and how they evaluate candidate configurations (using scoring functions). The accuracy of side-chain prediction depends crucially on the (assumed) positioning of the main-chain. Methods for predicting main-chain conformation are, in a sense, not as developed as that for side-chains. We conclude by surveying these methods. As with side-chain prediction, there are a great variety of approaches, which differ in how they divide up and search space and in how they score candidate conformations.

Publisher

Annual Reviews

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3