Structural Basis of Ion Pumping by Ca2+-ATPase of the Sarcoplasmic Reticulum

Author:

Toyoshima Chikashi12,Inesi Giuseppe12

Affiliation:

1. Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;

2. Department of Biochemsitry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland 21201-1503;

Abstract

▪ Abstract  The structures of the Ca2+-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca2+ bound form and unbound (but thapsigargin bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains as well as the mechanistic roles of phosphorylation are now becoming clear. Furthermore, the roles of critical amino acid residues identified by extensive mutagenesis studies are becoming evident in terms of atomic structure.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 324 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3