Autophagy, Cytoplasm-to-Vacuole Targeting Pathway, and Pexophagy in Yeast and Mammalian Cells

Author:

Kim John1,Klionsky Daniel J.1

Affiliation:

1. Section of Microbiology, University of California, Davis, California 95616;

Abstract

▪ Abstract  The sequestration and delivery of cytoplasmic material to the yeast vacuole and mammalian lysosome require the dynamic mobilization of cellular membranes and specialized protein machinery. Under nutrient deprivation conditions, double-membrane vesicles form around bulk cytoplasmic cargo destined for degradation and recycling in the vacuole/lysosome. A similar process functions to remove excess organelles under vegetative conditions in which they are no longer needed. Biochemical, morphological, and molecular genetic studies in yeasts and mammalian cells have begun to elucidate the molecular details of this autophagy process. In addition, the overlap of macroautophagy with the process of pexophagy and with the biosynthetic cytoplasm-to-vacuole targeting pathway, which delivers the resident vacuolar hydrolase aminopeptidase I, indicates that these three pathways are related mechanistically. Identification and characterization of the autophagic/cytoplasm-to-vacuole protein-targeting components have revealed the essential roles for various functional classes of proteins, including a novel protein conjugation system and the machinery for vesicle formation and fusion.

Publisher

Annual Reviews

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3