Affiliation:
1. Section of Microbiology, University of California, Davis, California 95616;
Abstract
▪ Abstract The sequestration and delivery of cytoplasmic material to the yeast vacuole and mammalian lysosome require the dynamic mobilization of cellular membranes and specialized protein machinery. Under nutrient deprivation conditions, double-membrane vesicles form around bulk cytoplasmic cargo destined for degradation and recycling in the vacuole/lysosome. A similar process functions to remove excess organelles under vegetative conditions in which they are no longer needed. Biochemical, morphological, and molecular genetic studies in yeasts and mammalian cells have begun to elucidate the molecular details of this autophagy process. In addition, the overlap of macroautophagy with the process of pexophagy and with the biosynthetic cytoplasm-to-vacuole targeting pathway, which delivers the resident vacuolar hydrolase aminopeptidase I, indicates that these three pathways are related mechanistically. Identification and characterization of the autophagic/cytoplasm-to-vacuole protein-targeting components have revealed the essential roles for various functional classes of proteins, including a novel protein conjugation system and the machinery for vesicle formation and fusion.
Cited by
326 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献