Toward a Biomechanical Understanding of Whole Bacterial Cells

Author:

Morris Dylan M.1,Jensen Grant J.1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena, California 91125;

Abstract

Following decades of research in genetics and biochemistry, the basic metabolism of bacteria is now well understood. In addition to core metabolism, however, bacterial cells also perform a number of mechanical tasks such as maintaining a characteristic shape, moving within their environment, segregating their genome, and dividing. Major advances in imaging technologies including fluorescence light microscopy (fLM) and electron cryotomography (ECT) have provided new insight into the bacterial ultrastructures that accomplish these tasks. It is now clear, for instance, that bacteria are highly organized, possessing cytoskeletons, specifically arranged genomes, internal compartments, and carefully positioned macromolecular machines. These structures and their functions are reviewed here in the form of a progress report toward a complete biomechanical understanding of a generalized bacterial cell. The goal of eventually integrating genetic, biochemical, imaging, and biophysical data into spatially explicit, mechanically predictive models of whole cells is highlighted.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3