Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes

Author:

Christianson David W.1,Cox J. David1

Affiliation:

1. Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323;

Abstract

▪ Abstract  The metal-activated hydroxide ion is a critical nucleophile in metalloenzymes that catalyze hydrolysis or hydration reactions. The most common metal used is zinc; occasionally, other transition metals such as manganese are required. Human carbonic anhydrase II and rat liver arginase serve as well-studied paradigms of zinc and manganese metalloenzymes, respectively. Comparative structure-function relationships between these two metalloenzymes highlight parallels in the chemistry of metal-activated hydroxide: (a) the protein environment of metal-bound hydroxide modulates its reactivity; (b) a hydrogen bond with metal-bound hydroxide holds it in the proper orientation for catalysis; (c) nonmetal substrate-binding sites are implicated in both enzyme mechanisms; and (d) regeneration of metal-bound hydroxide ion from a metal-bound water molecule requires proton transfer to bulk solvent mediated by a histidine proton shuttle residue. Interestingly, the electrostatics of catalysis differ between the two enzymes, in that the first step of catalysis requires formation of a negatively charged transition state in the carbonic anhydrase II mechanism, whereas a neutral transition state is approached in the arginase mechanism. This electrostatic feature may contribute to the differences in the chemistry, the metal binding sites, and the metal specificity between these two enzymes.

Publisher

Annual Reviews

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3