Advancing Our Knowledge in Biochemistry, Genetics, and Microbiology Through Studies on Tryptophan Metabolism

Author:

Yanofsky Charles1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305;

Abstract

I was fortunate to practice science during the last half of the previous century, when many basic biological and biochemical concepts could be experimentally addressed for the first time. My introduction to research involved isolating and identifying intermediates in the niacin biosynthetic pathway. These studies were followed by investigations focused on determining the properties of genes and enzymes essential to metabolism and examining how they were alterable by mutation. The most challenging problem I initially attacked was establishing the colinear relationship between gene and protein. Subsequent research emphasized identification and characterization of regulatory mechanisms that microorganisms use to control gene expression. An elaborate regulatory strategy, transcription attenuation, was discovered that is often based on selection between alternative RNA structures. Throughout my career I enjoyed the excitement of solving basic scientific problems. Most rewarding, however, was the feeling that I was helping young scientists experience the pleasure of performing creative research.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3