Transcription Elongation and Human Disease

Author:

Conaway Joan Weliky12,Conaway Ronald C.12

Affiliation:

1. Howard Hughes Medical Institute and 2Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104;

2. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190

Abstract

▪ Abstract  Eukaryotic mRNA synthesis is catalyzed by multisubunit RNA polymerase II and proceeds through multiple stages referred to as preinitiation, initiation, elongation, and termination. Over the past 20 years, biochemical studies of eukaryotic mRNA synthesis have largely focused on the preinitiation and initiation stages of transcription. These studies led to the discovery of the class of general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), which function in intimate association with RNA polymerase II and are required for selective binding of polymerase to its promoters, formation of the open complex, and synthesis of the first few phosphodiester bonds of nascent transcripts. Recently, biochemical studies of the elongation stage of eukaryotic mRNA synthesis have led to the discovery of several cellular proteins that have properties expected of general elongation factors and that have been found to play unanticipated roles in human disease. Among these candidate general elongation factors are the positive transcription elongation factor b (P-TEFb), eleven-nineteen lysine-rich in leukemia (ELL), Cockayne syndrome complementation group B (CSB), and elongin proteins, which all function in vitro to expedite elongation by RNA polymerase II by suppressing transient pausing or premature arrest by polymerase through direct interactions with the elongation complex. Despite their similar activities in elongation, the P-TEFb, ELL, CSB, and elongin proteins appear to play roles in a diverse collection of human diseases, including human immunodeficiency virus-1 infection, acute myeloid leukemia, Cockayne syndrome, and the familial cancer predisposition syndrome von Hippel-Lindau disease. Here we review our current understanding of the P-TEFb, ELL, CSB, and elongin proteins, their mechanisms of action, and their roles in human disease.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3