STRUCTURAL INSIGHTS INTO TRANSLATIONAL FIDELITY

Author:

Ogle James M.1,Ramakrishnan V.1

Affiliation:

1. Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom;,

Abstract

▪ Abstract  The underlying basis for the accuracy of protein synthesis has been the subject of over four decades of investigation. Recent biochemical and structural data make it possible to understand at least in outline the structural basis for tRNA selection, in which codon recognition by cognate tRNA results in the hydrolysis of GTP by EF-Tu over 75 Å away. The ribosome recognizes the geometry of codon-anticodon base pairing at the first two positions but monitors the third, or wobble position, less stringently. Part of the additional binding energy of cognate tRNA is used to induce conformational changes in the ribosome that stabilize a transition state for GTP hydrolysis by EF-Tu and subsequently result in accelerated accommodation of tRNA into the peptidyl transferase center. The transition state for GTP hydrolysis is characterized, among other things, by a distorted tRNA. This picture explains a large body of data on the effect of antibiotics and mutations on translational fidelity. However, many fundamental questions remain, such as the mechanism of activation of GTP hydrolysis by EF-Tu, and the relationship between decoding and frameshifting.

Publisher

Annual Reviews

Subject

Biochemistry

Cited by 521 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3