Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to Earthquakes

Author:

Spray John G.1

Affiliation:

1. Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada;

Abstract

Frictional melting is the result of the conversion of mechanical deformation to heat under adiabatic conditions of slip. Within planetary materials, which are mainly natural ceramics, frictional melting occurs at high strain rates (typically >10−2 s−1) and at slip velocities greater than 0.1 m s−1. The pathway to friction melting is controlled by the mechanical properties of a rock's constituent minerals, especially fracture toughness. Minerals with the lowest fracture toughnesses and breakdown temperatures are preferentially comminuted and fused to form the melt. The product is a polyphase suspension comprising mineral and rock fragments enclosed in a liquid matrix. This cools to form the rock type known as pseudotachylyte, and at even higher strain rates, it forms shock veins in meteorites and in impact craters, which may contain high-pressure mineral polymorphs. The generation of melt on sliding surfaces can lubricate earthquake faults, facilitate the post-shock modification of impact craters, and make landslides more hazardous.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3