Evolution of a Habitable Planet

Author:

Kasting James F.1,Catling David2

Affiliation:

1. Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802;

2. Department of Atmospheric Sciences and Astrobiology Program, University of Washington, Seattle, Washington 98195-1640;

Abstract

▪ Abstract  Giant planets have now been discovered around other stars, and it is only a matter of time until Earth-sized planets are detected. Whether any of these planets are suitable for life depends on their volatile abundances, especially water, and on their climates. Only planets within the liquid-water habitable zone (HZ) can support life on their surfaces and, thus, can be analyzed remotely to determine whether they are inhabited. Fortunately, current models predict that HZs are relatively wide around main-sequence stars not too different from our sun. This conclusion is based on studies of how our own planet has evolved over time. Earth's climate has remained conducive to life for the past 3.5 billion years or more, despite a large increase in solar luminosity, probably because of previous higher concentrations of CO2 and/or CH4. Both these gases are involved in negative feedback loops that help to stabilize the climate. In addition to these topics, we also briefly discuss the rise of atmospheric O2 and O3, along with their possible significance as indicators of life on other planets.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 416 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3