METHODS FOR ATTRIBUTING AMBIENT AIR POLLUTANTS TO EMISSION SOURCES

Author:

Blanchard Charles L.1

Affiliation:

1. Envair, Albany California 94706;

Abstract

▪ Abstract  Six methods for attributing ambient pollutants to emission sources are reviewed: emissions analysis, trend analysis, tracer studies, trajectory analysis, receptor modeling, and dispersion modeling. The ranges of applicability, types of information provided, limitations, performance capabilities, and areas of active research of the different methods are compared. For primary, nonreactive pollutants whose effects of concern occur on a global scale, an accounting of emissions rates by source type and location largely characterizes source contributions. For other pollutants or smaller spatial scales, accurate estimates of emissions are needed for identifying the emissions reduction potentials of possible control measures and as inputs to dispersion models. Emission levels are frequently known with factor-of-two accuracy or worse, and improved estimates are needed for dispersion modeling. The analysis of regional or urban-scale trends in emissions and ambient pollutant concentrations can provide qualitative information on source contributions, but quantitative results are limited by the confounding influence of variations in meteorology and uncertainties in the areas over which emissions affect concentrations. Tracer studies are useful for quantifying dispersion characteristics of plumes, qualitatively characterizing transport directions, and providing empirical data for evaluating trajectory and dispersion models. Data are usually temporally limited to a short study period, typically do not provide information on vertical pollutant distributions, and are most applicable to the transport of primary, nonreactive pollutants. Trajectory analyses are routinely used to estimate atmospheric transport directions. Trajectory errors of about 20% of travel distance are considered typical of the better models and data sets. Receptor models use measurements of ambient pollutant concentrations to quantify the contributions of different source types to primary particulate matter or volatile organic compounds, or to characterize source-region contributions to a single pollutant. Accuracy rates of ∼30% are often achieved when quantifying the contributions from different types of emission sources. Dispersion models are well-suited for estimating quantitative source-receptor relationships, as the effects of individual emission sources or source regions can be studied. Lagrangian and Gaussian dispersion models are computationally efficient and can simulate the transport of nonreactive primary or linear secondary species. Eulerian models are computationally intensive but lend themselves to the simulation of nonlinear chemistry. Careful evaluation of modeling accuracy is needed for a model application to fulfill its potential for source attribution. Accuracy can be evaluated through a combination of performance evaluation, sensitivity analysis, diagnostic evaluation, and corroborating analyses.

Publisher

Annual Reviews

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3