MODERN THOUGHTS ON AN ANCYENT MARINERE: Function, Evolution, Regulation

Author:

Hartl Daniel L.12,Lohe Allan R.12,Lozovskaya Elena R.12

Affiliation:

1. Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138;

2. Molecular and Population Genetics, Research School of Biological Sciences, The Australian National University, PO Box 475, Canberra 2601 ACT, Australia

Abstract

▪ Abstract  The mariner/Tc1 superfamily of transposable elements is one of the most diverse and widespread Class II transposable elements. Within the larger assemblage, the mariner-like elements (MLEs) and the Tc1-like elements (TLEs) are distinct families differing characteristically in the composition of the “D,D(35)E” cation-binding domain. Based on levels of sequence similarity, the elements in each family can be subdivided further into several smaller subfamilies. MLEs and TLEs both have an extraordinarily wide host range. They are abundant in insect genomes and other invertebrates and are found even in some vertebrate species including, in the case of mariner, humans, in which one element on chromosome 17p has been implicated as a hotspot of recombination. In spite of the extraordinary evolutionary success of the elements, virtually nothing is known about their mode of regulation within genomes. There is abundant evidence that the elements are disseminated to naive host genomes by horizontal transmission, and there is a substantial base of evidence for inference about the subsequent population dynamics. Studies of engineered mariner elements and induced mutations in the transposase have identified two mechanisms that may be operative in mariner regulation. One mechanism is overproduction inhibition, in which excessive wild-type transposase reduces the rate of excision of a target element. A second mechanism is dominant-negative complementation, in which certain mutant transposase proteins antagonize the activity of the wild-type transposase. The latter process may help explain why the vast majority of MLEs in nature undergo “vertical inactivation” by multiple mutations and, eventually, stochastic loss. There is also evidence that mariner/Tc1 elements can be mobilized in hybrid dysgenesis; in particular, certain dysgenic crosses in Drosophila virilis result in mobilization of a TLE designated Paris as well as the mobilization of other unrelated transposable elements.

Publisher

Annual Reviews

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3