Affiliation:
1. Biotechnology Laboratory, Departments of Microbiology and Immunology, and Plant Science, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
2. T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506–0225;
Abstract
▪ Abstract Mating type genes regulate sexual compatibility and sexual reproduction in fungi. This review focuses on recent molecular analyses of well-characterized mating systems from representative ascomycete (Neurospora crassa, Podospora anserina) and basidiomycete (Ustilago maydis, Coprinus cinereus, Schizophyllum commune) fungi. These mating systems include many conserved components, such as gene regulatory polypeptides and pheromone/receptor signal transduction cascades, as well as conserved processes, like self-nonself recognition and controlled nuclear migration. The components' structures and their genetic arrangements in the mating system vary greatly in different fungi. Although similar components and processes are also found in ascomycete yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe), the filamentous systems exhibit properties not encountered in yeast. Mating type genes act within, and control the development of, spatially differentiated fruiting bodies. The complex mating systems of basidiomycetes, unlike ascomycete systems, involve novel one-to-many specificity in both pheromone-receptor and homeodomain protein interactions.
Cited by
266 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献