DEVELOPMENT OF HYBRID STRAINS FOR THE MINERALIZATION OF CHLOROAROMATICS BY PATCHWORK ASSEMBLY

Author:

Reineke Walter1

Affiliation:

1. Bergische Universität–Gesamthochschule Wuppertal, Wuppertal, D-42097 Germany;

Abstract

▪ Abstract  The persistence of chloroaromatic compounds can be caused by various bottlenecks, such as incomplete degradative pathways or inappropriate regulation of these pathways. Patchwork assembly of existing pathways in novel combinations provides a general route for the development of strains degrading chloroaromatics. The recruitment of known complementary enzyme sequences in a suitable host organism by conjugative transfer of genes might generate a functioning hybrid pathway for the mineralization of some chloroaromatics not degraded by the parent organisms. The rational combination uses (a) peripheral, funneling degradation sequences originating from aromatics-degrading strains to fulfill the conversion of the respective analogous chloroaromatic compound to chlorocatechols as the central intermediates; (b) a central chlorocatechol degradation sequence, the so-called modified ortho pathway, which brings about elimination of chlorine substituents; and (c) steps of the 3-oxoadipate pathway to reach the tricarboxylic acid cycle. The genetic organization of these pathway segments has been well characterized. The specificity of enzymes of the xylene, benzene, biphenyl, and chlorocatechol pathways and the specificity of the induction systems for the chlorinated substrates are analyzed in various organisms to illustrate eventual bottlenecks and to provide alternatives that are effective in the conversion of the “new” substrate. Hybrid pathways are investigated in “new” strains degrading chlorinated benzoates, toluenes, benzenes, and biphenyls. Problems occurring after the conjugative DNA transfer and the “natural” solution of these are examined, such as the prevention of misrouting into the meta pathway, to give a functioning hybrid pathway. Some examples clearly indicate that patchwork assembly also happens in nature.

Publisher

Annual Reviews

Subject

Microbiology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3