TOUR DE PACLITAXEL: Biocatalysis for Semisynthesis

Author:

Patel Ramesh N.1

Affiliation:

1. Department of Microbial Technology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 191, New Brunswick, New Jersey 08903;mail.bms.com.

Abstract

▪ Abstract  In collaboration with the National Cancer Institute, Bristol-Myers Squibb has developed paclitaxel for treatment of various cancers; it has been approved by the Food and Drug Administration for the treatment of ovarian and metastatic breast cancer. Originally paclitaxel was isolated and purified from the bark of Pacific yew trees. This source of paclitaxel was considered to be economically and ecologically unsuitable as it required the destruction of the yew trees. This review article describes alternate methods for the production of paclitaxel, specifically, a semisynthetic approach and the application of biocatalysis in enabling the semisynthesis of paclitaxel. Three novel enzymes were discovered in our laboratory that converted the variety of taxanes to a single molecule, namely 10-deacetylbaccatin III (paclitaxel without C-13 side chain and C-10 acetate), a precursor for paclitaxel semisynthesis. These enzymes are C-13 taxolase (catalyzes the cleavage of C-13 side chain of various taxanes), C-10 deacetylase (catalyzes the cleavage of C-10 acetate of various taxanes), and C-7 xylosidase (catalyzes the cleavage of C-7 xylose from various xylosyltaxanes). Using a biocatalytic approach, paclitaxel and a variety of taxane in extracts of a variety of Taxus cultivars were converted to a 10-deacetylbaccatin III. The concentration of 10-deacetylbaccatin III was increased by 5.5- to 24-fold in the extracts treated with the enzymes, depending upon the type of Taxus cultivars used. Biocatalytic processes have also been described for the preparation of C-13 paclitaxel side chain synthons. The chemical coupling of 10-deacetylbaccatin III or baccatin III to C-13 paclitaxel side chain has been summarized to prepare paclitaxel by semisynthesis.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3