Affiliation:
1. Department of Microbial Technology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 191, New Brunswick, New Jersey 08903;mail.bms.com.
Abstract
▪ Abstract In collaboration with the National Cancer Institute, Bristol-Myers Squibb has developed paclitaxel for treatment of various cancers; it has been approved by the Food and Drug Administration for the treatment of ovarian and metastatic breast cancer. Originally paclitaxel was isolated and purified from the bark of Pacific yew trees. This source of paclitaxel was considered to be economically and ecologically unsuitable as it required the destruction of the yew trees. This review article describes alternate methods for the production of paclitaxel, specifically, a semisynthetic approach and the application of biocatalysis in enabling the semisynthesis of paclitaxel. Three novel enzymes were discovered in our laboratory that converted the variety of taxanes to a single molecule, namely 10-deacetylbaccatin III (paclitaxel without C-13 side chain and C-10 acetate), a precursor for paclitaxel semisynthesis. These enzymes are C-13 taxolase (catalyzes the cleavage of C-13 side chain of various taxanes), C-10 deacetylase (catalyzes the cleavage of C-10 acetate of various taxanes), and C-7 xylosidase (catalyzes the cleavage of C-7 xylose from various xylosyltaxanes). Using a biocatalytic approach, paclitaxel and a variety of taxane in extracts of a variety of Taxus cultivars were converted to a 10-deacetylbaccatin III. The concentration of 10-deacetylbaccatin III was increased by 5.5- to 24-fold in the extracts treated with the enzymes, depending upon the type of Taxus cultivars used. Biocatalytic processes have also been described for the preparation of C-13 paclitaxel side chain synthons. The chemical coupling of 10-deacetylbaccatin III or baccatin III to C-13 paclitaxel side chain has been summarized to prepare paclitaxel by semisynthesis.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献