CURRENT CONCEPTS OF ACTIVE DEFENSE IN PLANTS

Author:

Hutcheson Steven W.1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, and the Center for Agricultural Biotechnology of the University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742;

Abstract

▪ Abstract  A growing body of evidence indicates that elicitation of primary active defense responses results from a recognition event frequently involving protein-protein interactions. Most pathogen avirulence determinants eliciting resistance gene–dependent responses have been shown to be proteins with no apparent enzymic activity. Disruption of the tertiary and quaternary structure of these proteins abolishes their elicitor activity. Critical to their elicitor activity is their display by the pathogen. Resistance genes are proposed to function as receptors for the eliciting proteins. The most consistent feature of resistance gene products is the presence of potential protein binding domains in the form of leucine-rich repeat regions, and there is direct evidence for the physical interaction of elicitor proteins and receptor proteins in several cases. Thus in many but not all cases the primary recognition event eliciting an active defense response during incompatible interactions appears to be a protein-protein interaction occurring between a specific pathogen protein and a strategically placed receptor protein in the host cell. The interaction of elicitor protein with the receptor protein activates a signal transduction pathway leading to programmed cell death and an oxidative burst.

Publisher

Annual Reviews

Subject

Plant Science

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biochemical Changes in Host Plant Invaded by Opportunistic Fungi and Nematodes;Opportunistic Fungi, Nematode and Plant Interactions;2024

2. Simultaneous exposure of contrasting Vigna radiata cultivars to Macrophomina phaseolina infection and drought stress: morpho-physiological and biochemical implications;Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology;2023-08-12

3. Genome Editing for the Improvement of Oilseed Crops;Genome Editing Technologies for Crop Improvement;2022

4. Flagellin;Springer Protocols Handbooks;2022

5. Colletotrichum spp. from Soybean Cause Disease on Lupin and Can Induce Plant Growth-Promoting Effects;Microorganisms;2021-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3