TRANSCRIPTIONAL CONTROL OF THE PSEUDOMONAS TOL PLASMID CATABOLIC OPERONS IS ACHIEVED THROUGH AN INTERPLAY OF HOST FACTORS AND PLASMID-ENCODED REGULATORS

Author:

Ramos Juan L.1,Marqués Silvia1,Timmis Kenneth N.2

Affiliation:

1. Consejo Superior de Investigaciones Científicas, Department of Biochemistry and Molecular and Cellular Biology of Plants, Profesor Albareda 1, Granada, 18008 Spain;

2. Gesellschaft für Biotechnologische Forschung MBH, National Center for Biotechnology, Division of Microbiology, Mascheroder Weg 1, Braunschweig, D-38125 Germany

Abstract

▪ Abstract  The xyl genes of Pseudomonas putida TOL plasmid that specify catabolism of toluene and xylenes are organized in four transcriptional units: the upper-operon xylUWCAMBN for conversion of toluene/xylenes into benzoate/alkylbenzoates; the meta-operon xylXYZLTEGFJQKIH, which encodes the enzymes for further conversion of these compounds into Krebs cycle intermediates; and xylS and xylR, which are involved in transcriptional control. The XylS and XylR proteins are members of the XylS/AraC and NtrC families, respectively, of transcriptional regulators. The xylS gene is constitutively expressed at a low level from the Ps2 promoter. The XylS protein is activated by interaction with alkylbenzoates, and this active form stimulates transcription from Pm by σ70- or σS-containing RNA polymerase (the meta loop). The xylR gene is also expressed constitutively. The XylR protein, which in the absence of effectors binds in a nonactive form to target DNA sequences, is activated by aromatic hydrocarbons and ATP; it subsequently undergoes multimerization and structural changes that result in stimulation of transcription from Pu of the upper operon. This latter process is assisted by the IHF protein and mediated by σ54-containing RNA polymerase. Once activated, the XylR protein also stimulates transcription from the Ps1 promoter of xylS without interfering with expression from Ps2. This process is assisted by the HU protein and is mediated by σ54-containing RNA polymerase. As a consequence of hyperexpression of the xylS gene, the XylS protein is hyperproduced and stimulates transcription from Pm even in the absence of effectors (the cascade loop). The two σ54-dependent promoters are additionally subject to global (catabolite repression) control.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3