RISK-SPREADING AND BET-HEDGING IN INSECT POPULATION BIOLOGY

Author:

Hopper Keith R.1

Affiliation:

1. Beneficial Insect Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware 19713

Abstract

▪ Abstract  In evolutionary ecology, risk-spreading (i.e. bet-hedging) is the idea that unpredictably variable environments favor genotypes with lower variance in fitness at the cost of lower arithmetic mean fitness. Variance in fitness can be reduced by physiology or behavior that spreads risk of encountering an unfavorable environment over time or space. Such risk-spreading can be achieved by a single phenotype that avoids risks (conservative risk-spreading) or by phenotypic variation expressed by a single genotype (diversified risk-spreading). Across these categories, three types of risk-spreading can be usefully distinguished: temporal, metapopulation, and within-generation. Theory suggests that temporal and metapopulation risk-spreading may work under a broad range of population sizes, but within-generation risk-spreading appears to work only when populations are small. Although genetic polymorphisms have sometimes been treated as risk-spreading, the underlying mechanisms are different, and they often require different conditions for their evolution and thus are better treated separately. I review the types of evidence that could be used to test for risk-spreading and discuss evidence for risk-spreading in facultative diapause, migration polyphenism, spatial distribution of oviposition, egg size, and other miscellaneous traits. Although risk-spreading theory is voluminous and well developed in some ways, rarely has it been used to generate detailed, testable hypotheses about the evolution of risk-spreading. Furthermore, although there is evidence for risk-spreading, particularly in facultative diapause, I have been unable to find any definitive tests with unequivocal results showing that risk-spreading has been a major factor in the evolution of insect behaviors or life histories. To advance our understanding of risk-spreading in the wild, we need (a) explicit empirical models that predict levels of diversifying risk-spreading for several insect populations in several environments that vary in uncertainty, and (b) tests of these models using measurements of phenotypes and their fitnesses over several generations in each environment.

Publisher

Annual Reviews

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3