VISUALIZING CHROMOSOME STRUCTURE/ORGANIZATION

Author:

Lam Eric1,Kato Naohiro1,Watanabe Koichi

Affiliation:

1. Biotech Center for Agriculture and the Environment, Department of Plant Science, Rutgers the State University of New Jersey, New Brunswick, New Jersey 08901;, ,

Abstract

▪ Abstract  With the rapid development of sequencing technologies in the past decade, many eukaryotic genomes have been resolved at the primary sequence level. However, organization of the genome within nuclei and the principles that govern such properties remain largely unclear. Optimization of fluorescence probe-based hybridization technologies combined with new advances in the instrumentation for microscopy has steadily yielded more structural information on chromosome organization in eukaryote model systems. These studies provide static snapshots of the detailed organization of chromatin. More recently, the successful application of a chromatin tagging strategy utilizing auto fluorescent fusion proteins opened a new era of chromatin studies in which the dynamic organization of the genome can be tracked in near real time. This review focuses on these new approaches to studying chromatin organization and dynamics in plants, and on future prospects in unraveling the basic principle of chromosome organization.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3