RHAMNOGALACTURONAN II: Structure and Function of a Borate Cross-Linked Cell Wall Pectic Polysaccharide

Author:

O'Neill Malcolm A.1,Ishii Tadashi2,Albersheim Peter1,Darvill Alan G.1

Affiliation:

1. Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602;, ,

2. Forestry and Forest Products Institute, Ibaraki 305-8687, Japan;

Abstract

▪ Abstract  Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that was first identified in 1978 as a quantitatively minor component of suspension-cultured sycamore cell walls. Subsequent studies have shown that RG-II is present in the primary walls of angiosperms, gymnosperms, lycophytes, and pteridophytes and that its glycosyl sequence is conserved in all vascular plants examined to date. This is remarkable because RG-II is composed of at least 12 different glycosyl residues linked together by more than 20 different glycosidic linkages. However, only a few of the genes and proteins required for RG-II biosynthesis have been identified. The demonstration that RG-II exists in primary walls as a dimer that is covalently cross-linked by a borate diester was a major advance in our understanding of the structure and function of this pectic polysaccharide. Dimer formation results in the cross-linking of the two homogalacturonan chains upon which the RG-II molecules are constructed and is required for the formation of a three-dimensional pectic network in muro. This network contributes to the mechanical properties of the primary wall and is required for normal plant growth and development. Indeed, changes in wall properties that result from decreased borate cross-linking of pectin may lead to many of the symptoms associated with boron deficiency in plants.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3