SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS

Author:

Cramer W. A.1,Soriano G. M.1,Ponomarev M.1,Huang D.1,Zhang H.1,Martinez S. E.1,Smith J. L.1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 49707-1392

Abstract

▪ Abstract  The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of the existence of a large amount of primary sequence data, purified complex, the emergence of structures, and the ability of flash kinetic spectroscopy to assay function in a readily accessible ms–100 μs time domain. The redox active polypeptides are cytochromes f and b6 (organelle encoded) and the Rieske iron-sulfur protein (nuclear encoded) in a mol wt = 210,000 dimeric complex that is believed to contain 22–24 transmembrane helices. The high resolution structure of the lumen-side domain of cytochrome f shows it to be an elongate (75 Å long) mostly β-strand, two-domain protein, with the N-terminal α-amino group as orthogonal heme ligand and an internal linear 11-Å bound water chain. An unusual electron transfer event, the oxidant-induced reduction of a significant fraction of the p (lumen)-side cytochrome b heme by plastosemiquinone indicates that the electron transfer pathway in the b6f complex can be described by a version of the Q-cycle mechanism, originally proposed to describe similar processes in the mitochondrial and bacterial bc1 complexes.

Publisher

Annual Reviews

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3