A REVIEW OF MATERIAL COVER FEATURES FOR MITIGATING URBAN HEAT ISLAND

Author:

Pratiwi Sri Novianthi

Abstract

<p class="Body"><strong><em>Abstract</em></strong><strong><em></em></strong></p><p class="Body"><em>Urban Heat Island (UHI) is related to the increase of urban compared to rural temperature as the result of global phenomenon. The increase of temperature is predicted to be intensified along with the extend of urban activity in the near future. Therefore, the discussion on UHI becomes significance. This paper discusses the result of literature studies on thermal characteristics of materials that potentially used to reduce Urban Heat Island, especially in utilizing pavement and roof cover. </em><em> The result of the study concludes that the </em><em>reduction of UHI is determined by: 1) the high-level albedo (the ratio between the reflected heat and the absorbed heat) of material that is influenced by the color and texture of its surface; 2) The high level thermal emittance of material; 3) The lower capacity of material to store the heat. 4) The capability thermal conductivity of material surface. Recommended pavements to reduce UHI are cool pavement, reflective pavement, porous pavers, permeable pavers, pervious pavement, water retaining pavement. Roof cover materials that reduce Urban Heat Island are Cool Roof and Green Roof. The design and toughness of materials should be considered to reduce UHI.<strong></strong></em></p><p class="Body"> </p><em>Keywords: Urban Heat Island, material feature, thermal performance.</em>

Publisher

Universitas Trisakti

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review of heat recovery from roads for mitigating urban heat island effects: current state and future directions;Frontiers in Built Environment;2023-12-18

2. The effect of height and building orientation on thermal comfort sensation using PMV;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

3. A short review on measuring impact of microencapsulated phase change material in mitigating urban heat island;Materials Today: Proceedings;2022

4. Thermal performance of phase change material embedded in building Wall- a numerical analysis;Materials Today: Proceedings;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3