Machine Learning Model for High-Frequency Magnetic Loss Predictions Based on Loss Map by a Measurement Kit
Author:
Affiliation:
1. KU Leuven - EnergyVille,Genk,Belgium,3600
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10264177/10264226/10264272.pdf?arnumber=10264272
Reference27 articles.
1. MagNet: A Machine Learning Framework for Magnetic Core Loss Modeling
2. Generalized Preisach model of hysteresis
3. Magnet: An open-source database for data-driven magnetic core loss modeling;li;Proc IEEE Appl Power Electron Conf Expo,2022
4. Transfer learning methods for magnetic core loss modeling;dogariu;Proc IEEE 22nd Workshop Control Model Power Electron,2021
5. Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Conditional Generative Adversarial Network Aided Iron Loss Prediction for High-Frequency Magnetic Components;IEEE Transactions on Power Electronics;2024-08
2. Artificial Intelligence Applications in High-Frequency Magnetic Components Design for Power Electronics Systems: An Overview;IEEE Transactions on Power Electronics;2024-07
3. Automated Triple Pulse Testbed (ATPT) 1.0 – Large-Signal Hardware-in-the-loop Characterization Platform for Power Magnetics;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17
4. A Data-Driven Model for Power Loss Estimation of Magnetic Materials Based on Multi-Objective Optimization and Transfer Learning;IEEE Open Journal of Power Electronics;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3