Hybrid Model of Power MOSFET for Soft Failures Estimation Based on Time Domain Reflectometry and Machine Learning

Author:

Afanasenko Valentyna1,Sharma Kanuj1,Kamm Simon2,Kallfass Ingmar1

Affiliation:

1. University of Stuttgart,Institute of Robust Power Semiconductor Systems,Stuttgart,Germany

2. University of Stuttgart,Institute of Automation and Software Systems,Stuttgart,Germany

Funder

Ministry of Education

Publisher

IEEE

Reference11 articles.

1. Detection and Location of Defects in Wiring Networks Using Time-Domain Reflectometry and Neural Networks

2. Distributed Sensor Diagnosis in Complex Wired Networks for Soft Fault Detection Using Reflectometry and Neural Network

3. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations;raissi;Journal of Computational Physics,2019

4. Hybrid deep fault detection and isolation: Combining deep neural networks and system performance models;fink;International Journal of Prognostics and Health Management,2019

5. An intelligent wire fault diagnosis approach using time domain reflectometry and pattern recognition network;amloune;Nondestructive Testing And Evaluation,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3