OCR / HTR technologies and Armenian Heritage Preservation

Author:

Vidal-Gorene Chahan

Abstract

OCR (Optical Character Recognition) and HTR (Handwritten Text Recognition) are now ready for Armenian language. This technology may offer a greater valorization for documents by enabling improved accessibility, using by instance keywords search, and consists in a new challenge for Digital Libraries. Our presentation intends to propose a view on what is possible today, by introducing a state-of-the-art of the challenges raised by text recognition for Armenian. A focus will be drawn on the technology developed by Calfa for handwritten archives, ancient manuscripts and old printed books. We will present our feedback on three of our ongoing projects: processing catalogs of manuscripts (Mekhitarist, Venice), printed newspapers of Fundamental Scientific Library of NASRA, and handwritten correspondences (Mekhitarist, Venice). Methodology applied by Calfa leads to an accuracy higher than 95% for handwritten documents and higher than 99,5% for printed documents.

Publisher

National Library of Armenia Publications

Subject

General Materials Science

Reference8 articles.

1. Kindt B., Vidal-Gorène C., From Manuscript to Tagged Corpora. An Automated Process for Ancient Armenian or Other Under-Resourced Languages of the Christian East // Armeniaca. International Journal of Armenian Studies, 2022, No 1, pp. 73-96.

2. Kahle P., Colutto S., Hackl G. and Mühlberger G., Transkribus - A Service Platform for Transcription, Recognition and Retrieval of Historical Documents // 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp. 19-24.

3. Lucas N., Salah C., and Vidal-Gorène C., New Results for the Text Recognition of Arabic Maghribī Manuscripts - Managing an Under-resourced Script // arXiv preprint, 2022, arXiv: 2211.16147.

4. Nikolaidou, K., Seuret, M., Mokayed, H. et al., A survey of historical document image datasets // International Journal on Document Analysis and Recognition (IJDAR), Springer, 2022, No 25, pp. 305–338.

5. Ströbel P. B., Clematide S. and Volk. M., How Much Data Do You Need ? About the Creation of a Ground Truth for Black Letter and the Effectiveness of Neural OCR // Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, ACL Anthology, 2020, pp. 3551-3559.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3