Author:
Kuppuswamy Hariharan,Ganesan Arumaikkannu
Abstract
Additive manufacturing (AM) is an emerging field that merges engineering and life sciences to produce components that can effectively act as a replacement in the human body. This AM encompasses biofabrication using cells, biological or biomaterials as building blocks to fabricate biological and bio-application oriented substance, device and therapeutic products through a broad range of engineering and biological processes. Furthermore, bioactive coating on BAM surface facilitates biological fixation between the prosthesis and the hard tissue which increases the long term stability and integrity of the implant. In this paper, hydroxyapatite (HA) powder was coated over AM polyamide sub-strate using pulsed laser deposition. Coating morphology was characterised using scanning electron microscope (SEM) analysis and observed that the coating was dominated by the presence of particle droplet with different sizes. Com-pounds like tricalcium phosphate and a few amorphous calcium phosphates were found along with HA which was con-firmed by X-ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) techniques shows the presence of phosphate and carbonate groups in the HA structure. Nano-indentation and pull-out test reveals that the layer was strong enough and withstands higher load before it peels off. In vitro analysis was evaluated with human os-teosarcoma MG-63 cells with respect to the cell viability and results shows that the good viability was observed on coated surface due to combinational effect of Ca2+ and PO43? ions. The multitude of characterisation conducted on the coating has established that coating polyamide with HA results in a positive combination for an implant.
Publisher
Whioce Publishing Pte Ltd
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献