Structural, mechanical and in vitro studies on pulsed laser deposition of hydroxyapatite on additive manufactured polyamide substrate

Author:

Kuppuswamy Hariharan,Ganesan Arumaikkannu

Abstract

Additive manufacturing (AM) is an emerging field that merges engineering and life sciences to produce components that can effectively act as a replacement in the human body. This AM encompasses biofabrication using cells, biological or biomaterials as building blocks to fabricate biological and bio-application oriented substance, device and therapeutic products through a broad range of engineering and biological processes. Furthermore, bioactive coating on BAM surface facilitates biological fixation between the prosthesis and the hard tissue which increases the long term stability and integrity of the implant. In this paper, hydroxyapatite (HA) powder was coated over AM polyamide sub-strate using pulsed laser deposition. Coating morphology was characterised using scanning electron microscope (SEM) analysis and observed that the coating was dominated by the presence of particle droplet with different sizes. Com-pounds like tricalcium phosphate and a few amorphous calcium phosphates were found along with HA which was con-firmed by X-ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) techniques shows the presence of phosphate and carbonate groups in the HA structure. Nano-indentation and pull-out test reveals that the layer was strong enough and withstands higher load before it peels off. In vitro analysis was evaluated with human os-teosarcoma MG-63 cells with respect to the cell viability and results shows that the good viability was observed on coated surface due to combinational effect of Ca2+ and PO43? ions. The multitude of characterisation conducted on the coating has established that coating polyamide with HA results in a positive combination for an implant.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3