Author:
Pei Na,Hao Zhiyan,Wang Sen,Pan Binglei,Fang Ao,Kang Jianfeng,Li Dichen,He Jiankang,Wang Ling
Abstract
The pathological research and drug development of brain diseases require appropriate brain models. Given the complex, layered structure of the cerebral cortex, as well as the constraints on the medical ethics and the inaccuracy of animal models, it is necessary to construct a brain-like model in vitro. In this study, we designed and built integrated three-dimensional (3D) printing equipment for cell printing/culture, which can guarantee cell viability in the printing process and provide the equipment foundation for manufacturing the layered structures with gradient distribution of pore size. Based on this printing equipment, to achieve the purpose of printing the layered structures with multiple materials, we conducted research on the performance of bio-inks with different compositions and optimized the printing process. By extruding and stacking materials, we can print the layered structure with the uniform distribution of cells and the gradient distribution of pore sizes. Finally, we can accurately print a structure with 30 layers. The line width (resolution) of the printed monolayer structure was about 478 μm, the forming accuracy can reach 97.24%, and the viability of cells in the printed structure is as high as 94.5%.
Publisher
Whioce Publishing Pte Ltd
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献