Integrating zinc/silicon dual ions with 3D-printed GelMA hydrogel promotes in situ hair follicle regeneration

Author:

Zhang Fanliang,Zhang Zhaowenbin,Duan Xianlan,Song Wei,Li Zhao,Yao Bin,Kong Yi,Huang Xing,Fu Xiaobing,Chang Jiang,Huang Sha

Abstract

The regeneration of hair follicles lost from injury or disease represents a major challenge in cutaneous regenerative medicine. In this study, we investigated the synergetic effects between zinc and silicon ions on dermal cells and screened the optimal concentration of ions for medical applications. We integrated zinc/silicon dual ions into gelatin methacryloyl (GelMA) to bioprint a scaffold and determined that its mechanical properties are suitable for biological treatment. Then, the scaffold was employed to treat mouse excisional model in order to promote in situ hair follicle regeneration. Our findings showed that GelMA-zinc/silicon-printed hydrogel can significantly activate hair follicle stem cells and enhance neovascularization. The beneficial effects of the scaffold were further confirmed by the growth of hairs in the center of wounds and the improvement in perfusion recovery. Taken together, the present study is the first to combine GelMA with zinc/silicon dual ions to bioprint in situ for treating excisional wound, and this approach may regulate hair follicle regeneration not only directly by impacting stem cells but also indirectly through promoting angiogenesis.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3