Enhancement of Durability Properties and Drying Shrinkage of Heat-treated Oil Palm Shell Species High-strength Lightweight Concrete

Author:

Yew Mingkun,Yew Mingchian,Saw Lip Huat,Lim Siongkang,Beh Jing Hang,Ng Tanching

Abstract

In this study, the effects of heat-treated and non-treated oil palm shell (OPS) species (dura and tenera) are investigated on the slump, density and compressive strength of oil palm shell concrete (OPSC). Two different species of OPS coarse aggregates are subjected to heat treatment at 65 and 130 °C with the duration of 1 h. The results show that the workability of the OPSC increases significantly with an increase in temperature of heat-treated of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 51 and 54 MPa, respectively. Furthermore, rapid chloride penetration tests (RCPT), porosity measurement and water absorption tests were performance to signify the effects of heat treatment on different OPS species lightweight concrete (LWC). The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. The results showed that the ideal of heat treatment method has enhanced the performance of drying shrinkage. Hence, the findings of this study are of primary importance as they revealed that the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability properties and drying shrinkage of OPS LWC.

Publisher

Whioce Publishing Pte Ltd

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3