Additive manufacturing: A machine learning model of process-structure-property linkages for machining behavior of Ti-6Al-4V

Author:

Gong Xi,Zeng Dongrui,Groeneveld-Meijer Willem,Manogharan Guha

Abstract

Prior studies in metal additive manufacturing (AM) of parts have shown that various AM methods and post-AM heat treatment result in distinctly different microstructure and machining behavior when compared with conventionally manufactured parts. There is a crucial knowledge gap in understanding this process-structure-property (PSP) linkage and its relationship to material behavior. In this study, the machinability of metallic Ti-6Al-4V AM parts was investigated to better understand this unique PSP linkage through a novel data science-based approach, specifically by developing and validating a new machine learning (ML) model for material characterization and material property, that is, machining behavior. Heterogeneous material structures of Ti-6Al-4V AM samples fabricated through laser powder bed fusion and electron beam powder bed fusion in two different build orientations and post-AM heat treatments were quantitatively characterized using scanning electron microscopy, electron backscattered diffraction, and residual stress measured through X-ray diffraction. The reduced dimensional representation of material characterization data through chord length distribution (CLD) functions, 2-point correlation functions, and principal component analysis was found to be accurate in quantifying the complexities of Ti-6Al-4V AM structures. Specific cutting energy was the response variable for the Taguchi-based experimentation using force dynamometer. A low-dimensional S-P linkage model was established to correlate material structures of metallic AM and machining properties through this novel ML model. It was found that the prediction accuracy of this new PSP linkage is extremely high (>99%, statistically significant at 95% confidence interval). Findings from this study can be seamlessly integrated with P-S models to identify AM processing conditions that will lead to desired material behaviors, such as machining behavior (this study), fatigue behavior, and corrosion resistance.

Publisher

AccScience Publishing

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3