Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography

Author:

Madrid-Sánchez Alejandro,Duerr Fabian,Duerr Fabian,Nie Yunfeng,Nie Yunfeng,Thienpont Hugo,Thienpont Hugo,Ottevaere Heidi,Ottevaere Heidi

Abstract

The common characteristics that make scaffolds suitable for human tissue substitutes include high porosity, microscale features, and pores interconnectivity. Too often, however, these characteristics are limiting factors for the scalability of different fabrication approaches, particularly in bioprinting techniques, in which either poor resolution, small areas, or slow processes hinder practical use in certain applications. An excellent example is bioengineered scaffolds for wound dressings, in which microscale pores in large surface-to-volume ratio scaffolds must be manufactured – ideally fast, precise, and cheap, and where conventional printing methods do not readily meet both ends. In this work, we propose an alternative vat photopolymerization technique to fabricate centimeter-scale scaffolds without losing resolution. We used laser beam shaping to first modify the profile of the voxels in 3D printing, resulting in a technology we refer to as light sheet stereolithography (LS-SLA). For proof of concept, we developed a system from commercially available off-the-shelf components to demonstrate strut thicknesses up to 12.8 ± 1.8 μm, tunable pore sizes ranging from 36 μm to 150 μm, and scaffold areas up to 21.4 mm × 20.6 mm printed in a short time. Furthermore, the potential to fabricate more complex and three-dimensional scaffolds was demonstrated with a structure composed of six layers, each rotated by 45° with respect to the previous. Besides the demonstrated high resolution and achievable large scaffold sizes, we found that LS-SLA has great potential for scaling-up of applied oriented technology for tissue engineering applications. 

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3