Author:
Szűcs Diána,Fekete Zsolt,Guba Melinda,Kemény Lajos,Jemnitz Katalin,Kis Emese,Veréb Zoltán
Abstract
The importance of three-dimensional (3D) models in pharmacological tests and personalized therapies is significant. These models allow us to gain insight into the cell response during drug absorption, distribution, metabolism, and elimination in an organlike system and are suitable for toxicological testing. In personalized and regenerative medicine, the precise characterization of artificial tissues or drug metabolism processes is more than crucial to gain the safest and the most effective treatment for the patients. Using these 3D cell cultures derived directly from patient, such as spheroids, organoids, and bioprinted structures, allows for testing drugs before administration to the patient. These methods allow us to select the most appropriate drug for the patient. Moreover, they provide chance for better recovery of patients, since time is not wasted during therapy switching. These models could be used in applied and basic research as well, because their response to treatments is quite similar to that of the native tissue. Furthermore, they may replace animal models in the future because these methods are cheaper and can avoid interspecies differences. This review puts a spotlight on this dynamically evolving area and its application in toxicological testing.
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献