Fabrication of 3D gel-printed β-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering

Author:

Hu Xulin,Li Hu,Qiao Liang,Yang Shuhao,Wu Haoming,Peng Chao,Zhang Yamei,Lan Hai,Yang Hua,Li Kainan

Abstract

Human bone is composed of cortical bone and cancellous bone. The interior portion of natural bone is cancellous with a porosity of 50%–90%, but the outer layer is made of dense cortical bone, of which porosity was not higher than 10%. Porous ceramics were expected to be research hotspot in bone tissue engineering by virtue of their similarity to the mineral constituent and physiological structure of human bone. However, it is challenging to utilize conventional manufacturing methods to fabricate porous structures with precise shapes and pore sizes. Three-dimensional (3D) printing of ceramics is currently the latest research trend because it has many advantages in the fabrication of porous scaffolds, which can meet the requirements of cancellous bone strength, arbitrarily complex shapes, and individualized design. In this study, β-tricalcium phosphate (β-TCP)/titanium dioxide (TiO2 ) porous ceramics scaffolds were fabricated by 3D gel-printing sintering for the first time. The chemical constituent, microstructure, and mechanical properties of the 3D-printed scaffolds were characterized. After sintering, a uniform porous structure with appropriate porosity and pore sizes was observed. Besides, biological mineralization activity and biocompatibility were evaluated by in vitro cell assay. The results demonstrated that the incorporation of TiO2  (5 wt%) significantly improved the compressive strength of the scaffolds, with an increase of 283%. Additionally, the in vitro results showed that the β-TCP/TiO2  scaffold had no toxicity. Meanwhile, the adhesion and proliferation of MC3T3-E1 cells on scaffolds were desirable, revealing that the β-TCP/TiO2 scaffolds can be used as a promising candidate for repair scaffolding in orthopedics and traumatology. 

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3