Fabrication of Microstructured Calcium Phosphate Ceramics Scaffolds by Material Extrusion-Based 3D Printing Approach

Author:

Dee Peifang,Tan Sharlene,Le Ferrand HortenseORCID

Abstract

Natural materials such as bone and enamel have intricate microstructures with inorganic minerals oriented to perform multiple mechanical and biological functions. Current additive manufacturing methods for biominerals from the calcium phosphate (CaP) family enable fabrication of custom-shaped bioactive scaffolds with controlled pore structures for patient-specific bone repair. Yet, these scaffolds do not feature intricate microstructures similar to those found in natural materials. In this work, we used direct material extrusion to 3D print water-based inks containing CaP microplatelets, and obtained microstructured scaffolds with various designs. To be shear-thinning and printable, the ink incorporated a concentration of 21 – 24 vol% CaP microplatelets of high aspect ratio. Good shape retention, print fidelity and overhanging layers were achieved by simultaneous printing and drying. Combined with the 3D design, versatile CaP microstructured objects can be built, from porous scaffolds to bulk parts. Extruded filaments featured a core-shell microstructure with graded microplatelet orientations, which was not affected by the printing parameters and the print design. A simple model is proposed to predict the core-shell microstructure according to the ink rheology. Given the remaining open porosity after calcination, microstructured scaffolds could be infiltrated with an organic phase in future to yield CaP biocomposites for hard tissue engineering.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3