3D-Printed β-Tricalcium Phosphate Scaffolds Promote Osteogenic Differentiation of Bone Marrow-Deprived Mesenchymal Stem Cells in an N6-methyladenosine- Dependent Manner

Author:

Jiao Xin,Sun Xin,Li Wentao,Chu Wenxiang,Zhang Yuxin,Li Yiming,Wang Zengguang,Zhou Xianhao,Ma Jie,Xu Chen,Dai Kerong,Wang Jinwu,Gan Yaokai

Abstract

Bone defect is a serious orthopedic disease which has been studied for a long time. Alternative degradable biomaterials are required for bone repairing and regeneration to address the limitation of autogenous bone. β-tricalcium phosphate (β-TCP) is an alternative material with good cytocompatibility and has been used in bone defect treatment. However, whether β-TCP contributes to osteogenesis of bone marrow stem cells (BMSCs) through N6-methyladenosine (m6A) modification remains unknown. To address this issue, we verified the effects of β-TCP on osteogenesis of BMSCs. We also studied the expression of m6A-related enzymes in BMSCs after β-TCP treatment. Furthermore, the m6A level and stability of Runt-related transcription factor 2 (RUNX2) mRNA were investigated after β-TCP treatment. Finally, rat calvarial defect models were performed to detect expression level of osteogenic factors and m6A-related enzymes after the stimulation of three-dimension (3D)-printed β-TCP scaffolds. We found that β-TCP showed good biocompatibility and was osteoinductive. Meanwhile, methyltransferase-like 3 (METTL3) increased, causing the elevation of m6A level of RUNX2, results in stabler RUNX2 mRNA level. At last, based on the animal experiments, we demonstrated that the increase of RUNX2 and METTL3 levels was induced by β-TCP. These findings suggest that METTL3 increases the m6A level of RUNX2 mRNA after β-TCP induction, contributing to its stability, and the results in vivo also confirmed the osteogenic and bone-repair properties of β-TCP.

Publisher

Whioce Publishing Pte Ltd

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3