Author:
Zhou Yan,Wang Jingwen,Yang Youwen,Yang Mingli,Zheng Haizhong,Xie Deqiao,Wang Dongsheng,Shen Lida
Abstract
Biodegradable zinc (Zn) is expected to be used in clinical application like bone tissue engineering scaffolds, since it possesses favorable biocompatibility and suitable degradation rate. Laser powder bed fusion (LPBF), which is a typical additive manufacturing technique, offers tremendous advantages in fabricating medical devices with personalized geometric shape and complex porous structure. Therefore, the combination of LPBF and biodegradable Zn has gained intensive attention and also achieved rapid development in recent years. However, it severely challenges the formation quality and resultant performance of LPBF-processed Zn-based materials, due to the evaporation and element loss during laser processing. In this study, the current research status and future research trends for LPBF of Zn-based implants are reviewed from comprehensive viewpoints including formation quality, microstructure feature, and performance. The influences of powder characteristics and process parameters on formation quality are described systematically. The microstructure evolution, mechanical properties, as well as the degradation behavior are also discussed. Finally, the research perspectives for LPBF of Zn are summarized, aiming to provide guideline for future study.
Publisher
Whioce Publishing Pte Ltd
Subject
Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献