A bioinspired 3D-printable flexure joint with cellular mechanical metamaterial architecture for soft robotic hands

Author:

Mohammadi Alireza,Hajizadeh Elnaz,Tan Ying,Choong Peter,Oetomo Denny

Abstract

Compliant flexure joints have been widely used for cable-driven soft robotic hands and grippers due to their safe interaction with humans and objects. This paper presents a soft and compliant revolute flexure joint based on the auxetic cellular mechanical metamaterials with a heterogeneous structure. The heterogeneous architecture of the proposed metamaterial flexure joint (MFJ), which is inspired by the human finger joints, provides mechanically tunable multi-stiffness bending motion and large range of bending angle in comparison to conventional flexure joints. The multi-level variation of the joint stiffness over the range of bending motion can be tuned through the geometrical parameters of the cellular mechanical metamaterial unit cells. The proposed flexure joints are 3D printed with single flexible material in monolithic fashion using a standard benchtop 3D printer. The application of the MFJ is demonstrated in robotic in-hand manipulation and grasping thin and deformable objects such as wires and cables. The results show the capability and advantages of the proposed MFJ in soft robotic grippers and highly functional bionic hands.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3