Wavelet based long memory model for modelling wheat price in India

Author:

PAUL RANJIT KUMAR,SARKAR SANDIPAN,YADAV SATISH KUMAR

Abstract

Agricultural time-series data concerning production, prices, export and import of several agricultural commodities is published by Indian government along with other private agricultural sectors every year. The analysis of these factors is necessary to formulate and apply several policies regarding food acquisition and its distribution, quality and quantity of import and export products, pricing structure, MSP of agricultural commodities etc. Box - Jenkins's Autoregressive integrated moving average (ARIMA) model is broadly utilized in the field of time-series. In the field of time-series analysis, it is assumed by most of the researchers that the data points of different time lags do not depend on each other, i.e. absence of long memory process. But in agriculture, market price data exhibits that the observation are dependent on distant past. This is the possible indication of long memory process or long range dependency in the mean model. Autoregressive fractionally integrated autoregressive moving average (ARFIMA) model is generally used to portray the characteristic features of the long memory time series models as well as for the forecasting purposes. In this study wavelet decomposition is used for increasing the forecasting accuracy of the ARFIMA model. Daily wholesale data of wheat of Rewari market of Haryana for the period of January, 2010 to November, 2017 is used for the demonstration of our approach.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of out-of-sample forecast formulae for the FIGARCH model;Model Assisted Statistics and Applications;2024-06-11

2. Precision Management of Agricultural Products Wholesale Platform Based on Big Data Technology;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3