Zinc sorption characteristics and release kinetics from soils with long-term zinc and phosphorus application

Author:

SINGH PARMINDER,SAINI SAT PAL,SINGH PRITPAL

Abstract

We investigated the effect of long-term phosphorus (P) and zinc (Zn) application in three soils (Soil-I, Soil-II and Soil-III) with differential P content on Zn sorption and release kinetics to understand the underlying mechanism controlling Zn sorption-desorption reactions. Zn sorption was highest in soil-III (54.4-96.4% of added Zn), and was the lowest in soil-I (44.1-94.3% of added Zn) in no-P applied soils. In soil-III, 60.6-97.6% of applied Zn gets sorbed on soil colloidal complex with P application at 100 mg P kg-1, which was 1.2-11.4% higher at differential levels of Zn application. Results showed that Langmuir sorption maxima (b) and Freundlich’s adsorptive capacity (Y) were lowest for soil-I without P application and was the highest in soil-III with P application. These results suggests that soil-III with P application at 100 mg P kg-1 with highest Zn sorption had the lowest Zn release capacity. Further, these results showed that Elovich equation best described the kinetics of Zn release from three soils with highest value of coefficient of determination (R2=0.93-0.98*, p<0.05) and lowest standard error (S.E.= 0.172-0.256).

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3