Morpho-physiological trait variation of pre-harvest sprouting tolerance to simulated rain in mungbean (Vigna radiata)

Author:

RAO P S,MADHULETY T Y,ANKAIAH R,VOLETI S R

Abstract

Preharvest sprouting (PHS) is one of the most important factors for lower productivity in mungbean [Vigna radiata(L.) R. Wilczek]. The morpho-physiological characters, ultra-structural variations in pods and seeds, changes andregulatory water absorption pathway of 30 mungbean genotypes in relation to pre-harvest sprouting behaviour wasstudied during kharif 2017–19 at Seed Research Technology Center, Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana. Mungbean genotypes subjected to PHS imposed by simulated rainfall were evaluated. Rainfall simulator generates a rainfall spectrum that was similar to natural rainfall. Genotypes LGG 450 and K 851 with low score (%), while ML 267 and MGG 295 with high score (%) were screened as tolerant and susceptible to PHS. Accordingly, higher seed yield was recorded in LGG 450 (4.94 g/plant) followed by K 851 (4.20 g/plant) while lower seed yield was recorded in ML 267 (0.26 g/plant) followed by MGG 295 (0.79 g/plant). The findings were further corroborated with SEM studies by presence of sparse, wiry, short, twist or shriveled trichomes; thick cuticular pod wall, wide locular gap between seed coat (seed) and pod wall helping for the slow diffusion of moisture from endosperm to embryo. Further, the presence of lea-protein-insulated starch grains of endosperm merits lipophilic nature which might hindered dissipation of water to embryo via endosperm. The SEM studies have established ultrastructural features that determine the resistance to pre-harvest sprouting of mungbean and development of future resistant lines identification.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3