Canopy management to improve fruit quality of Coe Red Fuji, Granny Smith and Spartan varieties of apple (Malus domestica)

Author:

Mir Javid Iqbal,Ahmed Nazeer,Singh Desh Beer,Sharma Om Chand,Raja Waseem Hassan,Shafi Wajida,Zaffer Shafia,Jan Sumaira,Kirmani S N

Abstract

Light management within apple ( Malus domestica Borkh.) canopies has been an invariable rationale of fruit tree architecture strategy during the development of training systems. This paper attempts to compare fruit quality characteristics of three apple cultivars Coe Red Fuji, Granny Smith and Spartan trained on three canopy architectural engineering (training) system, viz. Espalier, Vertical axis and Cordon were grafted on M 9 rootstock. The maximum fruit weight (210.11g) was observed in Granny Smith and maximum yield per tree (32.11 kg/cm2) and yield efficiency (0.69 kg/cm2) in Coe Red Fuji which may be due to higher crop density. Among training systems, maximum fruit weight (200.12 g), highest yield per tree (36.36 kg) and maximum yield efficiency (0.72 kg/cm2) was observed in espalier training system. The interaction study displayed maximum fruit weight in Granny Smith (210.55g), highest yield per tree in Coe Red Fuji (32.16 kg) and maximum yield efficiency in Spartan on Espalier system. Light interception demonstrated maximum photon flux density (237 µmolm-2 s-1) across the canopy of Spartan with minimum leaf area index (0.30) and among training systems maximum PPFD (221 µmolm-2s-1) was observed in Espalier system with minimum LAI (0.21). Fruit size, TSS and colour parameters of fruits in all varieties were significantly influenced by light intensity. Higher the light intensity, higher was the TSS and colour development in coloured varieties like Spartan and Coe Red Fuji. Therefore, espalier training system was found the best canopy management system allowing maximum PAR penetration and diffusion leading better fruit quality and productivity.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3