Factor analysis for udder and teat type traits in Sahiwal and Karan Fries cows

Author:

SHARMA NISHA,D REVANASIDDU,KUMAR SUSHIL,GOWANE G R,GUPTA I D,VERMA ARCHANA

Abstract

Selecting female cows for productivity based on udder and teat traits is essential in field due to lack of available records. The objective of the present study was to reduce the dimensionality of the 17 udder and teat traits and to analyse their impact on milk productivity. The data on 256 cattle comprising 133 Sahiwal and 123 Karan Fries cows were used in this study over the years 2017-2019 from Livestock Research Centre (LRC) of ICAR-National Dairy Research Institute, Karnal. The 17 udder and teat traits were fore udder attachment (FUA), rear udder width (RUW), rear udder height (RUH), udder balance (UB), udder depth (UD), udder length (UL), udder width (UW), udder circumference (UC), central ligament/udder cleft (CL), teat circumference (TC), fore teat length (FTL), rear teat length (RTL), distance between fore and rear teat (DFR), distance between left and right teat (DLR), shortest distance from floor to fore teat (SDFT), shortest distance from floor to rear teat (SDRT) and teat diameter (TD). In the factor analysis, first five latent factors accounted for 62.22% of total variance in udder and teat measurements for Sahiwal cows and 65.67% in Karan Fries (KF) cows, respectively. In Sahiwal cows F1 represented better udder support and wideness (wide udders, udders were supported by strong suspensory ligament), whereas in KF cows, first factor reflected better udder dimension and distance between teats (longer length, width of udder and well placed teats). Factor analysis could reduce the multicollinearity of the data. It can be concluded that inclusion of udder and teat measurements in selection index can be a reliable criteria for selecting cows for higher milk yield.

Publisher

Indian Council of Agricultural Research, Directorate of Knowledge Management in Agriculture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3