Laboratory studies of the soil erosion and alluvium processes in the area of bridge supports

Author:

Morgunov K. P.1,Ivanovsky Yu. K.1,Bogatyrev V. G.1

Affiliation:

1. Admiral Makarov State University of Maritime and Inland Shipping

Abstract

The results of experimental studies of the process of bottom erosion during the construction of bridge supports under the protection of a sheet pile structure are presented. To protect the sheet piling box from the influence of ice floes during the period of ice drift, it is planned to install an ice-cutting protective device located upstream of the sheet piling box. In the process of conducting research, the principles of modeling the processes of river sediment transport taking into account the size of transported particles, non-erosive velocities and channel slopes are substantiated. Laboratory studies of the processes of forming erosion and alluvium are carried out for two cycles of parameters. At the same time, the influence of the ice-cutting device position relative to the sheet piling box on the amount of erosion and alluvium is studied. Experiments were carried out for various options of the ice cutter position relative to the sheet piling box; the ice cutter moved upstream along the axis of the tray with a step of 0.1 m (5 m for natural conditions). Based on measurements of bottom surface marks, two-dimensional erosion plans are constructed. For several options for the location of structures, the trajectories and directions of flow movement are determined by photographing the movement of surface floats, which makes it possible to create a grid of streamlines and determine the values of surface current velocities. An analysis of the velocity distribution over the surface and in the flow volume has shown that a horseshoe-shaped vortex is formed around the structure, with riffles and ridges appearing along its wings. A stagnation zone is established inside the “horseshoe”; in this zone the bottom remains relatively smooth. In the absence of an ice cutter, the main zones of soil erosion arise in the vicinity of the corners of the front face of the box, and alluviums form in the rear part of the structure. When installing an ice-cutting device in the shape of a triangle in front of the box, directed at an acute angle towards the oncoming flow, the erosion zones move to the vicinity of the corners lying at the base of the triangular ice cutter facing the box. The absolute values of erosion depth and alluvium height are reduced compared to the option without the ice cutter. When the ice cutter moves upstream relative to the box, a washout zone appears in the gap between the ice cutter and the box. The maximum values of erosion and alluvium occur in the absence of ice cutter and when placing the ice cutter at a distance of 200–300 mm from the box. The minimum values of erosion and alluvium are recorded when the ice cutter is placed close to the support box. With increasing flow rates and depths, the values of erosion and alluvium increase. Installing the ice-cutting device improves the hydraulic conditions of flow around the sheet piling box structure, which leads to a decrease in washout depths.

Publisher

Admiral Makarov State University of Maritime and Inland Shipping

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3