Using Experimental Data Designs and Multivariate Modeling to Assess the Effect of Glycated Serum Protein Concentration on Glucose Prediction from Near-Infrared Spectra of Human Serum

Author:

Sharma Sandeep1,Goodarzi Mohammad1,Delanghe Joris2,Ramon Herman1,Saeys Wouter1

Affiliation:

1. Katholieke Universiteit Leuven, BIOSYST-MeBioS, Kasteelpark Arenberg 30, Box 2456, Heverlee-Leuven, 3001 Belgium

2. Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, De Pintelaan 185 P8, 9000 Gent, Belgium

Abstract

Near-infrared (NIR) spectra of human blood serum consist of overlapping strong absorption bands of water and serum proteins, which affect the ability of multivariate calibration models to predict glucose. Furthermore, serum proteins such as albumin and globulins undergo a glycation reaction by forming covalent bonds with freely available glucose molecules in the serum. In diabetic individuals with poor glucose control, more and more serum protein molecules react with glucose, resulting in a high glycated protein concentration. The glucose molecules covalently bonded to serum proteins might contribute to the overall glucose signal acquired by NIR spectroscopy. This might affect the prediction ability of multivariate calibration models such as partial least squares regression (PLSR). In this study, we investigated the effect of total protein concentration and the glycated protein concentration in blood serum on the prediction ability of PLSR calibration models. Serum samples were subjected to ultra-filtration, and the PLSR model was built using NIR spectra of filtered serum solutions. Prediction performance was found to improve by 39–42% in absence of serum protein molecules. Various experimental data set designs were generated by carefully varying the glycated serum protein concentration in calibration and test sets of PLSR models. This investigation revealed that the impact of varying glycated protein concentration on the root mean square error of prediction was not drastic. To test the statistical significance of the prediction results, a multiple linear regression model was built. The glycated serum protein concentration was found to be statistically insignificant ( p = 0.86) in predicting glucose concentration. Overall, it was concluded that the glycated serum proteins do not affect the glucose prediction accuracy of PLSR models using NIR spectra of human serum.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3