Carrier Recombination-Incited Substrate Vibrations after Pulsed UV-Laser Photolysis of TiO2 Thin Single-Crystal Plate and Nanoparticle Films

Author:

Zhu Ming1,Zhu Gangbei1,Weng Yuxiang1

Affiliation:

1. The Key Laboratory of Softmatter Physics, The Institute of Physics, Chinese Academy of Science, Beijing 100190, China

Abstract

Photo-induced carrier generation and recombination have been regarded as important steps in understanding the photocatalytic reactions on the surfaces of semiconductors such as TiO2. During the investigation of a photocatalytic water-splitting reaction on the surface of semiconductor TiO2 (rutile) single-crystal plate and sintered-nanoparticle (anatase) films coated on a CaF2 plate, a pulsed 355 nm laser was used for band-gap excitation and a continuous-working, mid-infrared laser as the probe to trace the kinetics of the photogenerated electrons. Fast oscillations with periods of 10–50 μs were observed. We demonstrated experimentally that these oscillations are neither from the nonlinear carrier recombination dynamics nor surface chemical reactions; instead, they are caused by the thermal-induced flexural vibrations initiated by the fast carrier recombination in the light-absorbing area. The observed oscillations can be well accounted for by thermal stress-induced flexural vibrations of the substrates due to rapid charge recombination, and the observed oscillation frequencies match the flexural vibration frequencies predicted by the Kirchhoff–Love thin-plate theory. Light-interference effect caused by the beam reflecting off the surfaces of the substrate and windows, which can amplify the oscillation signals, is also discussed. Several approaches are proposed to minimize or eliminate the interference from the substrate vibration in the transient kinetic measurement when a coherent laser is used as the probe beam.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3