A Modified Infrared Spectrometer with High Time Resolution and Its Application for Investigating Fast Conformational Changes of the GTPase Ras

Author:

Lin Jie1,Gerwert Klaus1,Kötting Carsten1

Affiliation:

1. Department of Biophysics, Ruhr-University Bochum, Universitäetsstr. 150, Bochum 44801, Germany

Abstract

Time-resolved infrared spectroscopy is a valuable tool for the investigation of proteins and protein interactions. The investigation of many biological processes is possible by means of caged compounds, which set free biologically active substances upon light activation. Some caged compounds could provide subnanosecond time resolution, e.g., para-hydroxyphenacyl-guanosine 5'-triphosphate (GTP) forms GTP in picoseconds. However, the time resolution in single shot experiments with rapid-scan Fourier transform infrared (FT-IR) spectrometers is limited to about 10 ms. Here we use an infrared diode laser instead of the conventional globar and achieve a time resolution of 100 ns. This allows for the time-resolved measurement of the fast Rasoff to Rason conformational change at room temperature. We quantified the activation parameters for this reaction and found that the free energy of activation for this reaction is mainly enthalpic. Investigation of the same reaction in the presence of the Ras binding domain of the effector Raf (RafRBD) reveals a four orders of magnitude faster reaction, indicating that RasRafRBD complex formation directly induces the conformational change. Recent developments of broadly tunable quantum cascade lasers will further improve time resolution and usability of the setup. The reported 100 ns time resolution is the best achieved for a non-repetitive experiment so far.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3