Laser Spark Ignition of Premixed Methane–Air Mixtures: Parameter Measurements and Determination of Key Factors for Ultimate Ignition Results

Author:

Li Xiaohui123,Smith Benjamin W.3,Omenetto Nicoló3

Affiliation:

1. Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, Heilongjiang 150080, China

2. Harbin Institute of Technology, Institute of Opto-electronics, Harbin, Heilongjiang 150080, China

3. University of Florida, Department of Chemistry, Gainesville, FL 32611 USA

Abstract

In this study, we present an experimental investigation of the parameters of the laser spark ignition of premixed methane–air mixtures and the determination of the key factors for the ultimate ignition result. Ignition is achieved in a mesh honeycomb burner using the 1064 nm output of a neodymium-doped yttrium aluminum garnet (Nd : YAG) laser. All pertinent laser ignition parameters, including the minimum ignition energy, the ignition time and blow out time, and the effects that the variation of experimental conditions, such as the spark energy, ignition position, equivalence ratio (ER), and flow rate, have on these parameters have been addressed systematically. To identify the key factors for the ultimate result of laser ignition, several parameters of the ignition processes are measured simultaneously, with an emphasis given to the temporal behavior of the hydroxyl (OH) radicals in relation to the data regarding the spark energy and the local ER. A clear finding of the study is that successful ignition events are always related to higher OH radical photon emissions, considered to be proportional to the concentration level of the OH radicals present, thus indicating a direct link between the OH level at early times (on a microsecond scale) and the ultimate result of laser ignition. Two-dimensional correlation plots of the spark energy, local ER, and OH radical photon count at early times with the ultimate results of laser ignition indicate that the spark energy and local ER do not play a critical role in determining the success or failure of the ignition and that the OH concentration in the early time range is the key factor in determining the final fate of laser ignition. Finally, on the basis of the results obtained here and in the existing literature, some considerations of the mechanism of laser ignition are presented.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3