In situ Infrared Technique for Studying Adsorption onto Particulate Silica Surfaces from Aqueous Solutions

Author:

Ninness Brian J.1,Bousfield Doug W.1,Tripp Carl P.1

Affiliation:

1. Laboratory for Surface Science and Technology (LASST) (B.J.N., C.P.T.), Department of Chemical Engineering (B.J.N., D.W.B.), and Department of Chemistry (C.P.T.), University of Maine, Orono, Maine 04469

Abstract

An in situ infrared technique is described which allows the detection of adsorbed surface species on metal oxide particles in an aqueous environment. The technique involves first formulating a “coating” comprised of high-surface-area silica particles and a polymeric binder in a suitable solvent. The resulting coating is applied to the surface of an internal reflection element and mounted in a flow-through attenuated total reflection (ATR) apparatus. The technique is demonstrated with a ZnSe element coated with fumed silica particles in a polyethylene (PE) matrix. Access of the silica surface in the matrix to adsorbates was evaluated by comparing the gas-phase reaction of silanes on silica/PE-coated CsI windows in transmission with silica/PE-coated ZnSe in an ATR evacuable cell. It is shown that the PE weakly perturbs about 25% of the surface hydroxyl groups, and that all surface groups are available for reaction with silanes. The silica/PE is indefinitely stable in an aqueous environment and has advantages of at least 2 orders higher sensitivity and a wider spectral range over studies using oxidized silicon wafers. The usefulness of this technique for studying adsorption on metal oxide surfaces is demonstrated with the reaction of succinic anhydride on an aminosilanized silica surface. This reaction sequence is a common method used to prepare glass surfaces in the attachment of probe oligonucliotides for microarray biochip technology.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3