Temporal Gating for the Optimization of Laser-Induced Breakdown Spectroscopy Detection and Analysis of Toxic Metals

Author:

Fisher Brian T.1,Johnsen Howard A.1,Buckley Steven G.1,Hahn David W.1

Affiliation:

1. Department of Mechanical Engineering, University of Florida, Gainesville, Florida 32611-6300 (B.T.F., D.W.H.); Sandia National Laboratories, Livermore, California 94551-0969 (H.A.J.); and Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742 (S.G.B.)

Abstract

Optimal temporal gating for laser-induced breakdown spectroscopy (LIBS) analysis was investigated for a select group of toxic metals, namely the Resource Conservation and Recovery Act (RCRA) metals arsenic, beryllium, cadmium, chromium, lead, and mercury. The differing rates of decay between the continuum plasma emission and the atomic emission were used as a means to maximize the signal-to-noise ratio of the atomic emission lines for these six metal species. Detection windows were investigated corresponding to delay times from 2 to 50 μs following the plasma-initiating laser pulse. For the current experimental conditions, it is concluded that the relatively short delay time of 12 μs is optimal for the detection of arsenic, beryllium, cadmium, and mercury, while a longer delay time of 50 μs is optimal for the detection of chromium and lead. The reduced atomic emission intensity at relatively long delay times is compensated for by the use of long detector gate widths. Estimated detection limits are reported for the six metal species based on the optimized temporal gating and ensemble averaging of multiple laser pulses, and the implications for simultaneous metals monitoring are discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3